Chemistry 226 Organic Chemistry Laboratory I

<u>Catalog Description:</u> CHEM 226. Organic Chemistry Laboratory. 2-0-6. Prerequisite: CHEM 110. Prerequisite or co-requisite: CHEM 222. An introduction to the study of the properties and preparation of organic compounds.

<u>Prerequisite:</u> CHEM 110 <u>Prerequisite or corequisite:</u> CHEM 222

Required Texts and Other Materials:

- 1 The Organic Chem Lab Survival Manual, A Student's Guide to Techniques, 7th Edition by Zubrick
- 2 Safety goggles
- 3 Laboratory notebook. Bound, duplicating with tear out sheets

Required Supplemental Readings: None

Student Outcome Goals and Objectives:

At the end of this course the student will be able to

- Learn the 12 principles of green chemistry
- Compare and contrast green chemical routes with older methods
- Use melting point/mixed melting point to characterize compounds
- Extract products from various solvents,
- Recrystallize products,
- Perform fractional and simple distillation,
- Synthesize various organic compounds,
- Analyze and identify organic compounds by infrared spectroscopy, thin-layer chromatography, gas chromatography, and nuclear magnetic resonance.

Schedule of Experiments

(Reading assignments from Zubrick in parentheses.)

Day	Experiment	Day	Experiment
		19 August	Check In/Safety
24 August	Solventless Aldol (ch. 1-4,	26 August	Start Solid Phase
	7, 9, 11, 13; pp. 88-93)		Photochemistry
			Start Ethanol from
			Molasses
31 August	Greener Bromination of E-	2 September	Distillation of Ethanol
	Stilbene (pp. 146, 203-4)		from Molasses (ch. 19, 20,
			34, 36)
7 September	Labor Day Holiday	9 September	NMR (ch. 35) and GC (ch.
			32)
14 September	NMR and GC	16 September	Dehydration (ch. 10) and
			IR (ch. 34)
21 September	Synthesis and	23 September	Synthesis and
	Recrystallization of Adipic		Recrystallization of Adipic
	Acid		Acid*

28 September	Finish Solid Phase Photochemistry	30 September	Review
5 October	Midterm	7 October	Liquid CO ₂ Extraction
12 October	Oxidative Coupling of Alkynes: Glaser- Eglington-Hay Coupling (ch. 21, 28)	14 October	Oxidative Coupling of Alkynes: Glaser- Eglington-Hay Coupling
19 October	Friedel-Crafts Reaction: Acetylation of Ferrocene	21 October	Friedel-Crafts Reaction: Acetylation of Ferrocene*
26 October	Electrophilic Aromatic Iodination	28 October	Biodiesel
2 November	Microwave Synthesis of 5,10,15,20- Tetraphenylporphyrin (ch. 29)	4 November	Microwave Synthesis of 5,10,15,20- Tetraphenylporphyrin
9 November	Combinatorial Chemistry ²	11 November	Nucleophilic Substitution of Fabric Dyes ¹
16 November	Review	18 November	Final
23 November	Thanksgiving Holiday	25 November	Thanksgiving Holiday
30 November			

Course Content: ¹freshly washed 100% cotton material or T-shirt required by each student ²samples require 24 hours incubation so each student will be required to return the next day (not class day) to view the plates

Method of Evaluation:

All students will perform experiments using proper safety practices.

Notebook: 25 points/experiment 14 experiments 350 points
*Formal reports on adipic acid, acetylferrocene (50 pts. each) 100 pts
Midterm Exam 100 points
Final Exam 100 points
650 points

Grades will be determined using the following scale:

A: 90-100 B: 80-90 C: 70-80 D: 60-70 F: <60